
Overview
In this lesson, students learn about binary to create a binary
counter using Python.

Objectives
• Explain the necessity of binary numbers
• Be able to translate back and forth between base 2 and

base 10 number systems
• Program the Micro:bit to create a visual binary counter

Materials
• micro:bit and micro-USB cord
• Computer with access to the internet

Approx. Time Required
1-2 hours

Micro:bit Python Programming
Binary and Visual Counter

Cyber Connections
• Programming – Students will
program in Python.

• Hardware and Software – Stu-
dents will utilize small electron-
ics and learn how a computer is
programmed while using micro-
controllers.

This content is based upon work supported by the US Department of Homeland Security's Cybersecurity & Infrastructure Security Agen-
cy under the Cybersecurity Education Training and Assistance Program (CETAP).

Coding
Fundamentals

2Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

Binary and Visual Counter
Understanding Binary

• This lesson may need to span multiple sessions, as the binary lesson itself
can be quite long.

• Binary (or “base 2”) is a numeric system that uses only two digits — 0 and
1. Computers and other technological devices operate using binary to
store data or perform new calculations. This is possible because at the
very base level of ANY computer-controlled technology, an electrical
current is either on or it is off. The item is either “true” or “false,”
which we have seen briefly with our conditional operations. Editors
or compilers (like the Python online editor) are used to take the code
written by programmers like you and transform it into “machine code”
comprised of binary that the computer can read and use. For this reason,
anything numbered that is used by a computer ALWAYS starts at 0, much
like the arrays used in earlier lessons.

• So how does it work? A binary number is composed of any number of
“bits.” A bit is the smallest possible unit to store computational data, as
it contains only a 0 or a 1. Each additional bit added to a binary number
increases its storing capabilities exponentially. This concept will
become clearer with the worksheets and tables below. As you can see,
bits increase storage capacity from right to left, with each bit capable of
storing one more than all the bits to the right of it combined.

• If your students are unfamiliar with exponents, this is a great time to
introduce them and show that that each number is just the last multiplied
by 2 again. Binary numbers can range to any number of bits, but since
our Micro:bit only has rows of 5 LEDs, we will stick to 5 bits. Student
worksheets contain the table below as well as an empty table to practice
all possible binary values with 5 bits.

3Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

Base 10
Number 24 23 22 21 20 Total

1 0 0 0 0 1 00001
= 1 1
31 1 1 1 1 1 11111
= 16 8 4 2 1 31
0 0 0 0 0 0 00000
= 0
6 0 0 1 1 0 00110
= 4 2 6

23 1 0 1 1 1 10111
= 16 4 2 1 23

4Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

Base 2 to Base 10

ALWAYS work right to left when converting to binary (base-2) numbers from
base-10, filling in the largest possible bit that will fit the number first.

An example conversion for the number 14 is given below:

14

Does 24 or 16 fit into 14? No, so mark a 0 on the binary bit and move on to the
next one.

Base 10
Number 24 23 22 21 20 Total

14 0 0 _ _ _ _

14

Does 23 or 8 fit into 14? Yes, so subtract 8 and place a 1 in the binary bit
before moving on.

Base 10
Number 24 23 22 21 20 Total

14 0 1 01 _ _ _

6

Does 22 or 4 fit in to 6? Yes, so subtract 4 and place a 1 in the binary bit before
moving on.

Base 10
Number 24 23 22 21 20 Total

14 0 1 1 011 _ _

2

Does 21 or 2 fit in to it? Yes, so subtract 2, and place a 1 in the binary bit
before moving on.

5Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

Base 10
Number 24 23 22 21 20 Total

14 0 1 1 1 0111 _

0

Now that you’ve reach 0, all remaining bits should be set to 0. This gives us
our final number: 01110.

Base 10
Number 24 23 22 21 20 Total

14 0 1 1 1 0 01110

6Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

Base 10 to Base 2

Going from binary to base 10 is even easier. You simply need to add the value displayed by all the 1s in
the binary number. This is displayed in the table on page 2, with the white lines showing this form of
conversion.

Binary Visual Counter

Once students are comfortable with what binary is, why it’s used, and how to convert to it, it is time to tie
it in to a Micro:bit program. The good news is that there are no new concepts or commands needed to
write this program, students already have all the tools they need to make their next project: a binary visual
counter.

The program should keep a counter that is increased every time the A button is pressed. Students should
then be able to convert this counter to a binary number using the exact method show above. Here is a
sample code of a working binary counter:

from microbit import *

binCounter = 0 #Counter to hold the number to convert to binary

while True:
 if button_a.is_pressed(): #Add one to counter if button is pressed and wait 500 ms
 binCounter = binCounter + 1
 sleep(500)

 elif button_b.is_pressed(): #Subtract one from counter if button is pressed wait 500 ms
 binCounter = binCounter - 1
 sleep(500)

 elif binCounter > 31: #Reset if the counter exceeds the about of bits we can show
 binCounter = 0

 BVNum = binCounter #A variable to hold the number
 #while we convert it

 if BVNum/16 >= 1: #If 16 fits into it, show a 1 and subtract 16
 display.set_pixel(0,2,9)
 BVNum = BVNum - 16

 else: #else show a 0
 display.set_pixel(0,2,0)

 if BVNum/8 >= 1: #If 8 fits into it, show a 1 and subtract 8
 display.set_pixel(1,2,9)
 BVNum = BVNum - 8

7Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

 else: #else show a 0
 display.set_pixel(1,2,0)

 if BVNum/4 >= 1: #If 4 fits into it, show a 1 and subtract 4
 display.set_pixel(2,2,9)
 BVNum = BVNum - 4

 else: #else show a 0
 display.set_pixel(2,2,0)

 if BVNum/2 >= 1: #If 2 fits into it, show a 1 and subtract 2
 display.set_pixel(3,2,9)
 BVNum = BVNum - 2

 else: #else show a 0
 display.set_pixel(3,2,0)

 if BVNum >= 1: #If 1 fits into it, show a 1 and subtract 1
 display.set_pixel(4,2,9)

 else: #else show a 0
 display.set_pixel(4,2,0)

Things to note:

• Students will need 2 variable for this, one to count and one to convert.

• The counter will need to be reset once it reaches 31, as that is the maximum that can be displayed
with 5 LEDs.

• The else statements to set the light to 0 are necessary, otherwise the LEDs will stay on from previous
numbers.

